266 research outputs found

    GENETIC ALGORITHM WITH TWO OBJECTIVE FOR REAL-TIME TASK SCHEDULING WITH COMMUNICATION TIME

    Get PDF
    Purpose of the study:The real-time task scheduling on multiprocessor system is known as an NP-hard problem. This paper proposes a new real-time task scheduling algorithmwhich considers the communication time between processors and the execution order between tasks. Methodology:Genetic Algorithm (GA)with Adaptive Weight Approach (AWA) is used in our approach. Main Findings:Our approach has two objectives. The first objective is to minimize the total amount of deadline-miss. And the second objective is to minimize the total number of processors used. Applications of this study:For two objectives,the range of each objective is readjusted through Adaptive Weight Approach (AWA) and more useful result is obtained. Novelty/Originality of this study:This study never been done before.This study also wasprovided current information about scheduling algorithm and heuristics algorithm

    メラトニンによるポストコンディショニングは、マウス神経細胞においてメラトニン受容体を介したミトコンドリア透過性遷移孔の開口を介してNMDA受容体の働きを抑制する

    Get PDF
    Mitochondrial membrane potential regulation through the mitochondrial permeability transition pore (mPTP) is reportedly involved in the ischemic postconditioning (PostC) phenomenon. Melatonin is an endogenous hormone that regulates circadian rhythms. Its neuroprotective effects via mitochondrial melatonin receptors (MTs) have recently attracted attention. However, details of the neuroprotective mechanisms associated with PostC have not been clarified. Using hippocampal CA1 pyramidal cells from C57BL mice, we studied the involvement of MTs and the mPTP in melatonin-induced PostC mechanisms similar to those of ischemic PostC. We measured changes in spontaneous excitatory postsynaptic currents (sEPSCs), intracellular calcium concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents after ischemic challenge, using the whole-cell patch-clamp technique. Melatonin significantly suppressed increases in sEPSCs and intracellular calcium concentrations. The NMDAR currents were significantly suppressed by melatonin and the MT agonist, ramelteon. However, this suppressive effect was abolished by the mPTP inhibitor, cyclosporine A, and the MT antagonist, luzindole. Furthermore, both melatonin and ramelteon potentiated depolarization of mitochondrial membrane potentials, and luzindole suppressed depolarization of mitochondrial membrane potentials. This study suggests that melatonin-induced PostC via MTs suppressed the NMDAR that was induced by partial depolarization of mitochondrial membrane potential by opening the mPTP, reducing excessive release of glutamate and inducing neuroprotection against ischemia-reperfusion injury.博士(医学)・甲第847号・令和4年9月28日Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)

    マウスの神経細胞において、Ischemic postconditioningはmitochondrial permeability transition poreとKATPチャネルの開口を介してNMDA受容体電流を低下させる。

    Get PDF
    Ischemic postconditioning (PostC) is known to reduce cerebral ischemia/reperfusion (I/R) injury; however, whether the opening of mitochondrial ATP-dependent potassium (mito-KATP) channels and mitochondrial permeability transition pore (mPTP) cause the depolarization of the mitochondrial membrane that remains unknown. We examined the involvement of the mito-KATP channel and the mPTP in the PostC mechanism. Ischemic PostC consisted of three cycles of 15 s reperfusion and 15 s re-ischemia, and was started 30 s after the 7.5 min ischemic load. We recorded N-methyl-D-aspartate receptors (NMDAR)-mediated currents and measured cytosolic Ca²⁺ concentrations, and mitochondrial membrane potentials in mouse hippocampal pyramidal neurons. Both ischemic PostC and the application of a mito-KATP channel opener, diazoxide, reduced NMDAR-mediated currents, and suppressed cytosolic Ca2+ elevations during the early reperfusion period. An mPTP blocker, cyclosporine A, abolished the reducing effect of PostC on NMDAR currents. Furthermore, both ischemic PostC and the application of diazoxide potentiated the depolarization of the mitochondrial membrane potential. These results indicate that ischemic PostC suppresses Ca²⁺ influx into the cytoplasm by reducing NMDAR-mediated currents through mPTP opening. The present study suggests that depolarization of the mitochondrial membrane potential by opening of the mito-KATP channel is essential to the mechanism of PostC in neuroprotection against anoxic injury.博士(医学)・甲第781号・令和3年3月15日© Springer Science+Business Media, LLC, part of Springer Nature 2020This is a post-peer-review, pre-copyedit version of an article published in Cellular and molecular neurobiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10571-020-00996-y

    Abnormal Vaginal Cytology after Total Laparoscopic Hysterectomy in Patients with Cervical Intraepithelial Neoplasia

    Get PDF
    To explore the incidence of abnormal vaginal cytology after total laparoscopic hysterectomy for the treatment of cervical intraepithelial neoplasia 3, we retrospectively analyzed the medical records of patients treated at NHO Shikoku Cancer Center (Japan) in 2014-2019. The cases of 99 patients who underwent a laparoscopic (n=36) or open (n=63) hysterectomy and postoperative follow-up were examined. Abnormal vaginal cytology was detected in 13.9% (5/36) of the laparoscopic-surgery (LS) group and 14.3% (9/63) of the open-surgery (OS) group. A vaginal biopsy was performed at the physicians’ discretion; one LS patient and six OS patients were diagnosed with vaginal intraepithelial neoplasia. The cumulative incidence of abnormal vaginal cytology at 3 years post-hysterectomy was 21.4% (LS group) and 20.5% (OS group), a nonsignificant difference. A multivariate analysis showed that age > 50 years was the only independent risk factor for abnormal vaginal cytology among the covariates examined including age; body mass index; histories of vaginal delivery, abdominal surgery, and smoking; and surgical approach (hazard ratio 8.11; 95% confidence interval 1.73-37.98; p=0.01). These results suggest that the occurrence of abnormal vaginal cytology after a hysterectomy may not be influenced by the laparoscopic procedure but is associated with older age

    Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3

    Get PDF
    The CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-like factors (CELF) family or the Bruno-like family and is involved in the control of splicing, translation and mRNA degradation. Several target RNA sequences of CUG-BP1 have been predicted, such as the CUG triplet repeat, the GU-rich sequences and the AU-rich element of nuclear pre-mRNAs and/or cytoplasmic mRNA. CUG-BP1 has three RNA-recognition motifs (RRMs), among which the third RRM (RRM3) can bind to the target RNAs on its own. In this study, we solved the solution structure of the CUG-BP1 RRM3 by hetero-nuclear NMR spectroscopy. The CUG-BP1 RRM3 exhibited a noncanonical RRM fold, with the four-stranded b-sheet surface tightly associated with the N-terminal extension. Furthermore, we determined the solution structure of the CUG-BP1 RRM3 in the complex with (UG)3 RNA, and discovered that the UGU trinucleotide is specifically recognized through extensive stacking interactions and hydrogen bonds within the pocket formed by the b-sheet surface and the N-terminal extension. This study revealed the unique mechanism that enables the CUG-BP1 RRM3 to discriminate the short RNA segment from other sequences, thus providing the molecular basis for the comprehension of the role of the RRM3s in the CELF/Bruno-like family

    An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure

    Get PDF
    AbstractSQUAMOSA promoter-binding proteins (SBPs) form a major family of plant-specific transcription factors, mainly related to flower development. SBPs share a highly conserved DNA-binding domain of ∼80 amino acids (SBP domain), which contains two non-interleaved zinc-binding sites formed by eight conserved Cys or His residues. In the present study, an Arabidopsis SPL12 SBP-domain fragment that lacks a Cys residue involved in the C-terminal zinc-binding pocket was found to retain a folded structure, even though only a single Zn2+ ion binds to the fragment. Solution structure of this fragment determined by NMR is very similar to the previously determined structures of the full SBP domains of Arabidopsis SPL4 and SPL7. Considering the previous observations that chelating all the Zn2+ ions of SBPs resulted in the complete unfolding of the structure and that a mutation of the Cys residue equivalent to that described above impaired the DNA-binding activity, we propose that the Zn2+ ion at the N-terminal site is necessary to maintain the overall tertiary structure, while the Zn2+ ion at the C-terminal site is necessary for the DNA binding, mainly by guiding the basic C-terminal loop to correctly fit into the DNA groove

    Structural basis for the dual RNA-recognition modes of human Tra2-beta RRM

    Get PDF
    Human Transformer2-beta (hTra2-beta) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-beta specifically binds to two types of RNA sequences [the CAA and (GAA)2 sequences]. We determined the solution structure of the hTra2-beta RRM (spanning residues Asn110–Thr201), which not only has a canonical RRM fold, but also an unusual alignment of the aromatic amino acids on the beta-sheet surface. We then solved the complex structure of the hTra2-beta RRM with the (GAA)2 sequence, and found that the AGAA tetra-nucleotide was specifically recognized through hydrogen-bond formation with several amino acids on the N- and C-terminal extensions, as well as stacking interactions mediated by the unusually aligned aromatic rings on the beta-sheet surface. Further NMR experiments revealed that the hTra2-beta RRM recognizes the CAA sequence when it is integrated in the stem-loop structure. This study indicates that the hTra2-beta RRM recognizes two types of RNA sequences in different RNA binding modes

    Conditioned medium from stem cells derived from human exfoliated deciduous teeth ameliorates NASH via the Gut-Liver axis

    Get PDF
    Non-alcoholic steatohepatitis (NASH) occurrence has been increasing and is becoming a major cause of liver cirrhosis and liver cancer. However, effective treatments for NASH are still lacking. We examined the benefits of serum-free conditioned medium from stem cells derived from human exfoliated deciduous teeth (SHED-CM) on a murine non-alcoholic steatohepatitis (NASH) model induced by a combination of Western diet (WD) and repeated administration of low doses of carbon tetrachloride intraperitoneally, focusing on the gut-liver axis. We showed that repeated intravenous administration of SHED-CM significantly ameliorated histological liver fibrosis and inflammation in a murine NASH model. SHED-CM inhibited parenchymal cell apoptosis and reduced the activation of inflammatory macrophages. Gene expression of pro-inflammatory and pro-fibrotic mediators (such as Tnf-α, Tgf-β, and Ccl-2) in the liver was reduced in mice treated with SHED-CM. Furthermore, SHED-CM protected intestinal tight junctions and maintained intestinal barrier function, while suppressing gene expression of the receptor for endotoxin, Toll-like receptor 4, in the liver. SHED-CM promoted the recovery of Caco-2 monolayer dysfunction induced by IFN-γ and TNF-α in vitro. Our findings suggest that SHED-CM may inhibit NASH fibrosis via the gut-liver axis, in addition to its protective effect on hepatocytes and the induction of macrophages with unique anti-inflammatory phenotypes

    Pathobiological implications of mucin (MUC) expression in the outcome of small bowel cancer.

    Get PDF
    Mucins have been associated with survival in various cancer patients, but there have been no studies of mucins in small bowel carcinoma (SBC). In this study, we investigated the relationships between mucin expression and clinicopathologic factors in 60 SBC cases, in which expression profiles of MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC6 and MUC16 in cancer and normal tissues were examined by immunohistochemistry. MUC1, MUC5AC and MUC16 expression was increased in SBC lesions compared to the normal epithelium, and expression of these mucins was related to clinicopathologic factors, as follows: MUC1 [tumor location (p = 0.019), depth (p = 0.017) and curability (p = 0.007)], MUC5AC [tumor location (p = 0.063) and lymph node metastasis (p = 0.059)], and MUC16 [venous invasion (p = 0.016) and curability (p = 0.016)]. Analysis of 58 cases with survival data revealed five factors associated with a poor prognosis: poorly-differentiated or neuroendocrine histological type (
    corecore